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Abstract 

Fibrotic encapsulation limits the efficacy and lifetime of implantable biomedical devices. 

Microtopography has shown promise in the regulation of myofibroblast differentiation, a key 

driver of fibrotic encapsulation. However, existing studies have not systematically isolated the 

requisite geometric parameters for suppression of myofibroblast differentiation via 

microtopography, and there has not been in vivo validation of this technology to date. To 

address these issues, a novel lamination method was developed to afford more control over 

topography dimensions. Specifically, in this study we focus on fiber length and its effect on 

myofibroblast differentiation. Fibroblasts cultured on films with microfibers exceeding 16 ~Lm in 

length lost the characteristic morphology associated with myofibroblast differentiation, while 

sho1ier microfibers of 6 µm length failed to produce this phenotype. This increase in length 

corresponded to a 50% decrease in fiber stiffness, which acts as a mechanical cue to influence 

myofibroblast differentiation. Longer microfiber films suppressed expression of myofibroblast 

specific genes (uSMA, Collu2, and Col3ul) and TGFP signaling components (TGFPl ligand, 

TGFP receptor II, and Smad3). 16 µm long microfiber films implanted subcutaneously in a 

mouse wound-healing model generated a substantially thinner fibrotic capsule and less 

deposition of collagen in the wound bed. Together, these results identify a critical feature length 

threshold for microscale topography-mediated repression of fibrotic encapsulation. This study 

also demonstrates a simple and powerful strategy to improve surface biocompatibility and reduce 

fibrotic encapsulation around implanted materials. 
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Introduction 

Chronic foreign body responses and resultant fibrotic encapsulation pose one of the 

primary obstacles facing implantable sensors or therapeutic delivery devices. This complication 

limits the lifetime of the device by impairing the flow of nutrients and analytes, as well as 

delivery of therapeutics into the host tissue.1-3 Fibrotic encapsulation is initiated by fibroblast 

recruitment to the site of implantation. Recruited fibroblasts subsequently differentiate into 

myofibroblasts in response to the growth factor TGF~, as well as to mechanical tension present 

in the wound space.4•
5 TGF~ activates expression of alpha smooth muscle actin ( aSMA) and 

collagen, the major protein component of the fibrotic capsule.5 The inh·acellular mechanisms 

involved in promotion of the myofibroblast phenotype via mechanosensing are still largely 

unknown, but correlate with increased actin sh·ess fiber formation, generation of internal cellular 

tension, and elongated cell shape.4 Mechanical cues have been found to regulate the TGF~ 

pathway in a variety of contexts, and therefore it is likely that these two types of cues interact 

closely to regulate myofibroblast differentiation and fibrotic encapsulation.6-8 In fact, it is well 

known that compliant materials can reduce the activation of the TGF~ pathway and 

myofibroblast differentiation.4
•
7
-

11 However, a method to leverage this knowledge into effective 

product design remains elusive. 

Multiple strategies have been proposed to circumvent fibrotic encapsulation, primarily 

focusing on material biocompatibility and co-delive1y of anti-inflammato1y agents, which limit 

and add complexity to device design, respectively.2•3•
12 In addition, previous studies have 

demonstrated that topography - a cue that can directly affect cell differentiation and behavior in 

a variety of contexts - may also be utilized to reduce the fibrotic response. 11
•
13

-
26 One advantage 

of topography, especially at the micro and nanoscale, is that it could conceivably alter the surface 
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mechanics as perceived by cellular interaction without greatly altering the design of implanted 

devices on the macroscale.27 Of particular interest to implanted devices, Kam et al. 

demonstrated that high-aspect ratio microfibers, produced by imprint lithography, reduced 

fibroblast proliferation and differentiation in vitro.19 These high-aspect ratio microfibers may 

represent a method to leverage the well-documented effect of compliant materials on fibroblast 

behavior into a material that can be applied therapeutically or as an improvement to current 

designs. However, this study compared a variety of geometries without a systematic isolation of 

specific topographical feature dimensions (e.g. fiber height or width), making it difficult to 

identify the minimum necessary physical parameters that lead to knockdown of the fibrotic 

response via topography. Moreover, it is unknown whether this effect would be replicated in 

vivo. 

In this paper, we describe a novel lamination method to create microscale fibers on the 

surface of a polypropylene film. This approach yields microfibers that closely match the 

dimensions of topography previously shown to reduce myofibroblast differentiation, but 

additionally allows fiber length to be independently tuned by varying the lamination rate. 

Fibroblasts grown on long microfiber films demonstrate a reduction in expression of 

myofibroblast markers, as well as components of the TGF~ pathway. Murine implantation 

studies demonstrate the anti-fibrotic potential of these microfiber films in vivo, with a dramatic 

reduction in collagen deposition around the implanted films, as well as alteration of the 

fibroblastic morphology surrounding the film. These studies introduce and validate a novel way 

to engineer microtopography that reduces myofibroblast differentiation and prevents fibrotic 

encapsulation in vivo, thereby offering a new technology to improve the performance and 

longevity of implanted biomedical devices. 

5 
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Results 

Microfiber geometry and stiffness are defined by a simple lamination method 

To determine the effect of fiber length on fibroblast morphology, polypropylene films 

with 1 µm diameter microfibers of either 6 µm ("short") or 16 µm ("long") lengths were 

fabricated using a simple lamination method (Figure 1 ). Briefly, microfiber height was controlled 

by polypropylene lamination speed while diameter was controlled by the pore size of the 

negative polycarbonate template. To determine the change in surface energy with the addition of 

microfibers, half angle measurements were completed on each type of film. While the half angle 

did change with the addition of microfibers on polypropylene films, the angle is not significantly 

different between short and long microfiber films, suggesting addition of microfibers results in a 

similar shift in surface energy for the polypropylene film (Supplemental Figure 1) 

Nanoindentation was used to identify the relative stiffness of the fibers under 

compressive load. Using a flat punch diamond nanoindenter tip with a 10 µm square cross-

section, the microfibers were compressed in the G200 nanoindenter at a constant prescribed 

displacement rate of 10 nm/s. 12 separate sets of nanoindentations in different locations on the 

sample were perfmmed. Figure 2A and B show the representative load vs. displacement data for 

the shmi and long microfiber films, respectively. The linear portion of the unloading data was 

used to estimate the microfiber stiffness. It is important to note that the stiffness experienced by 

a cell on a microfiber film depends on the deflection of the microfibers in contact with the cell. 

The stiffness reported here is relative to the shmi microfiber film. Our experiments revealed that 

the long microfibers were less than half as stiff as shmi microfibers, offering a less rigid 

interface for attached cells (Figure 2C). 

6 
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Characteristic myofibroblast morphology and gene expression are suppressed on long 

microfiber films. 

Murine 3T3 fibroblasts cultured on both short and long microfiber films were imaged by 

scanning electron microscopy (SEM) and compared to fibroblasts cultured on flat polypropylene 

film controls. SEM images reveal a progressive change in fibroblast morphology as fiber length 

increases (Figure 3A). On flat controls and short microfiber films, fibroblasts possess elongated 

projections that emanate from the central cell body and appear rigid. In contrast, on long 

microfiber films, fibroblasts are devoid of these linear projections and instead adopt a more 

trapezoidal, less spindled morphology. High magnification SEM images of the cellular 

projections reveal additional differences between flat, short, and long microfiber films (Figure 

3B). On flat and short microfiber films, the cellular projections are comprised of dense, linear 

cytoskeletal networks. On long microfiber films, the cytoskeletal network is less prominent and 

loosely draped over the topography, in contrast to the dense, linear network in fibroblasts grown 

on short microfiber and flat films. 

To determine whether the differences in morphology seen in the SEM images c01rnlate 

with changes in the actin cytoskeleton, cells were stained for filamentous actin (F-actin) using 

rhodamine phalloidin (Figure 3C). Fibroblasts cultured on flat films f01m prominent stress fibers 

with multiple ve11ices along the cell perimeter, reflecting points of attachment to the substrate. In 

contrast, fibroblasts grown on either the short or long microfiber films have less prominent stress 

fibers and a more rounded cell shape with fewer vetiices. 

Changes in cell morphology and stress fiber f01mation suggest that exposure to 

microfiber films may alter intracellular tension generation. Phosphorylation of myosin light 

chain (pMLC) induces intracellular tension along actin stress fibers, and 3 T3 fibroblasts were 

7 
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therefore stained for pMLC after 48 hours of culture (Figure 3D). Compared to cells grown on 

flat films, pMLC staining in fibroblasts cultured on short or long microfibers adopts a more 

diffuse pattern, indicating a decrease in myosin contractile activity and internal cellular tension. 

Staining intensity on long and short fibers was significantly decreased compared to that on flat 

films (Supplemental Figure 2) 

The morphological and cytoskeletal changes in fibroblasts noted above suggest 

myofibroblast differentiation is selectively decreased on long microfibers, most likely in 

response to an increase in compliance at the interface. To dete1mine the effect of microfiber 

length on myofibroblast differentiation, 3T3 fibroblasts were cultured on microfiber films for 48 

hours in the presence of TGFpl to induce differentiation toward the myofibroblast phenotype. 

While culture on short microfiber films had no statistically significant effect compared to flat 

controls, culture on long fibers reduced expression of aSMA and Coll a2 by 40% and 60%, 

respectively (Figure 3E and F). Expression of Col3al was more modestly reduced on both long 

and shmt microfiber films, reaching 20% at 48 hours (Figure 3G). Therefore, microfibers 

beyond a critical length seem to selectively reduce myofibroblast-specific gene expression. 

Long microfibers suppress activation of the TGFP pathway. 

As TGFP directly regulates myofibroblast gene expression, the effect of microfiber length 

on this signaling pathway was analyzed. Fibroblasts cultured for 48 hours on both shmt and long 

microfiber films exhibited a reduction in gene expression of TGFP signaling components, 

including TGFP 1 ligand, TGFP 1 receptor 2 (TPRII), and the transcription factor Smad3 (Figure 

4A). However, consistent with the expression patterns of aSMA and Colla2, knockdown of 

8 
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TGFP signaling was most pronounced in fibroblasts cultured on long microfiber films, with a 

50% or greater reduction in all TGFP signaling genes compared to flat controls. 

As Smad3 RNA expression was reduced by culture on microfiber films, Smad nuclear 

localization, which indicates activation of Smad by TGFp, was assessed in 3T3 fibroblasts by 

immunofluorescence. After 48 hours, Smad 2/3 staining intensity is markedly decreased in shoti 

and long microfibers (Figure 4B). Compared to bright nuclear staining on flat films, fibroblasts 

on short microfiber films have a significant reduction in nuclear staining intensity, with small 

regions of focal hyperintensity that localize to the nucleoli. On long microfiber films, nuclear 

Smad2/3 is even further decreased and diffusely distributed, with no regions of localized 

intensity. Smad3 (and to a lesser extent Smad2) acts as a transcription factor to up regulate 

o.SMA, Collo.2, and Col3al gene expression.28
-

33 Therefore, the suppression of myofibroblast 

specific genes in fibroblasts cultured on long microfiber films may result from this reduction of 

Smad2/3 activation and nuclear localization, reducing its availability for transcriptional 

regulation. 

Long microfiber films inhibit fibrotic encapsulation in vivo 

The above in vitro experiments suggest that long microfiber films reduce myofibroblast 

differentiation, and therefore could reduce scar tissue production and encapsulation in vivo. To 

detennine the perfotmance of microfiber films in vivo, flat, shoti and long microfiber films were 

implanted subcutaneously in wild-type adult mice. At two weeks post-surgety, histologic 

analysis with Masson's trichrome stain shows sparser deposition of collagen (in blue), as well as 

a 41 % reduction in the fibrotic area in wounds treated with long microfiber films (Figure 5A and 

B). Short microfiber fihns did not significantly reduce collagen deposition compared to flat 

9 
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controls. Additionally, at high-power magnification, a change in fibroblast morphology within 

the wound bed is also observed (Figure SA, inset photos). In wound beds treated with flat films, 

fibroblast nuclei adopt an elongated, spindled morphology that is classically associated with 

myofibroblast differentiation. In contrast, fibroblasts observed at the interface of the long 

microfiber films have nuclei that are much more rounded with an aspect ratio closer to 1. Nuclei 

at the interface of sh01i microfiber films have an intermediate aspect ratio between that of the flat 

and long microfiber films (Figure SC). These differences in morphology mirrors the changes in 

3T3 fibroblast morphology seen in vitro via SEM and immunofluorescence. 

To further assess collagen deposition around flat or microfiber films in vivo, 

immunofluorescence staining was performed (Figure 6A). Deposition of collagen I is selectively 

reduced by 39% at the interface of the long microfiber films, while there is no significant change 

in collagen III staining (Figure 6B, Supplemental Figure 3). In wound beds treated with flat and 

short microfiber films, high magnification images demonstrate that immunofluorescence is most 

intense directly above and below the pocket containing the inse1ied film (Figure 6C). In 

contrast, wound beds treated with long microfiber films have differential staining, such that 

intense staining for collagen I is found inferior to the film, while staining is nearly absent 

superior to the long microfiber film. This differential intensity is notew01ihy because 

microfibers are only present on the supelior side of the inserted film. The inferior side of the 

microfiber film is flat and therefore acts as an internal control, inducing a similar collagen 

staining intensity to that found at both interfaces of the flat film. 

10 
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Discussion 

We demonstrate that a specific microtopography may be used to decrease fibrotic 

encapsulation in vivo by diminishing myofibroblast differentiation via suppression of TGF~ 

signaling. Our versatile lamination method for microfiber fabrication allows for controllable 

variations in geometry by simply adjusting lamination speed or polycarbonate membrane pore 

size and spacing. Controlling the geometry of the presented topography allowed isolation of 

microfiber length for study as a regulator of myofibroblast differentiation. While the topography 

itself can impact fibroblast differentiation (by altering the conformation, concentration of the 

adsorbed proteins, and available attachment area which may in tum effect integrin engagement, 

filopodia foimation, and myofibroblast differentiation), dramatic repression of differentiation is 

only observed on long microfibers, compared to relatively mild effects on short 

microfibers. 13
•
17

•
19

•
3
4-

36 Long microfibers are most likely interpreted by the cell as an increase 

in compliance, as increased microfiber length presents a less stiff and more deformable interface. 

Therefore, the reduction in myofibroblast differentiation is likely in response to mechanosensing 

of a compliant material.4
•
7

•
17

•
37

•
38 It is also likely that suppression of TGF~ signaling is in 

response to perceived compliance, as interaction between the TGF~ pathway and 

mechanosensing has been identified in numerous contexts, including mechanisms that seem to 

directly affect Smad activation and localization, similar to the observations described in this 

study.6-8 

While wound beds treated with microfibers demonstrated a dramatic reduction in 

collagen deposition and fibrotic response at two weeks, it should be noted that a minor fibrotic 

response still developed around the microfiber film. Moreover, only one time point was 

investigated and a full time course to a month or more would be necessary to dete1mine the full 
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effect of the microfiber films on fibrotic encapsulation. Nevertheless, the reduction in the 

thickness and density of the capsule surrounding the microfiber film suggests that microfibers 

could improve diffusion of therapeutics and analytes to and from implantable devices and may 

represent a viable strategy in reduction of post-operative scarring. Microfibers induce changes in 

nuclear morphology in vivo that mirror changes seen in vitro suggesting similar mechanisms are 

involved in both contexts. 15 Future work should assess the effect of microfibers on other aspects 

of the inflammatory response, including recrnitment of macrophages and other inflammatory 

cells. Moreover, although previous work indicates that a similar effect can be seen on 

polystyrene microtopography19
, polymers other than polypropylene should be investigated to 

determine the optimal material for the reduction of the fibrotic response using microfibers. 

12 
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Conclusions 

We report a novel synthesis strategy to reproducibly create polypropylene-based microscale 

topography. Using this approach, we define specific geometric parameters that reduce interfacial 

compliance and suppress myofibroblast differentiation via inhibition of the TGFP pathway. 

Additionally, we demonstrate that these microfibers can reduce fibrotic encapsulation in vivo, 

demonstrating their potential use in implantable biomedical devices to prevent encapsulation. 

13 
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Microfiber Film Fabrication: Microfiber films were fabricated by laminating polypropylene 

films into microporous polycarbonate membranes in a hot roll laminator (Cheminstruments, HL-

100), as described previously (Figure lA).39 Briefly, polystyrene (Sigma, 182427), dissolved in 

toluene (10% w/v), was spin-cast on to a PET backing layer. The polystyrene was used to cap a 

microporous polycarbonate membrane (Millipore, ATTP04700), which was then overlaid on pre-

pressed polypropylene film (Lab Supply, TF-225-4). All layers were pressed through the hot roll 

laminator at 20 psi and 210°C. Lamination speed was used to control fiber length, with short 

fibers pressed at 0. 7 mm/s and long fibers at 0.2 mm/s (Figure lB). Polycarbonate and 

polystyrene was then etched away in two serial washes in methylene chloride for 8 minutes each. 

All experiments were compared to flat polypropylene film controls processed as above but 

without the overlaid microporous membrane. Microfiber length and diameter were measured in 

lmageJ from SEM images and averaged from a minimum 5 film samples. Figure lC shows the 

mean and standard deviation of the fiber dimensions for representative "long" and "short" 

microfiber films. ANOVA analysis followed by Student Newman Keuls test was used to 

evaluate statistical significance. 

Half Angle Measurements: The surface energy of flat and microfiber films was assessed with 

half angle measurements usmg a CAM-Plus Micro/Film Contact Angle Meter 

(Cheminstrucments). The half angle was measured for a droplet of approximately 20 µl of 

water. Three films per topography were tested, with droplets applied to three separate locations 

for each film. ANOVA analysis followed by Student Newman Keuls test was used to evaluate 

statistical significance. 

14 
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Nanoindentation: Microfiber films were compressed in air using the XP module of Agilent's 

nanoindenter 0200 with a custom-made diamond flat punch indenter tip with a 10 µm square 

cross-section. Compressions were perfo1med at a constant prescribed displacement rate of 10 

nm/s through a feedback loop. Approximately 12 fibers were compressed simultaneously under 

the flat punch to depths ranging from 30% to 90% of the lengths of the straight fibers. Two load-

unload cycles were performed for each sample with a hold segment of one second at peak 

displacement. At least 5 tests were performed for each compression depth. ANOV A analysis 

followed by Student Newman Keuls test was used to evaluate statistical significance. Calculated 

stiffnesses were compared to the harmonic contact stiffness acquired during the experiment at 

the data acquisition rate of-150 Hz to ensure full contact (Supplemental Figure 4). 

Cell Culture: Murine 3T3 fibroblasts were used for all in vitro studies. Growth media for 3T3 

fibroblasts consisted of DMEM high glucose with 10% fetal bovine serum (FBS), 1 % sodium 

pyruvate, and 1 % penicillin/streptomycin. Experiments were performed in differentiation media 

consisting of growth media supplemented with 5 ng/ml TGF~l (Peprotech, 100-21). 

Scanning Electron Microscope (SEM) Imaging: To prepare cells adhered to microfiber films for 

SEM imaging, cells were fixed in 4% paraf01maldehyde in PBS for 15 minutes at room 

temperature. Drying was perfotmed in 100% ethanol with a critical point dtyer (Tousimis). 

Samples of microfiber films with and without cells were coated with 10 nm of iridium before 

imaging in a Carl Zeiss Ultra 55 Field Emission Scanning Electron Microscope using an in-lens 

SE detector at a beam voltage of 2kV and a working distance of approximately 6 mm. 

Immunojluorescence: After 48 hours of culture, cells were fixed in 4% parafmmaldehyde in 

PBS for 15 min at room temperature, pe1meabilized in PBS with 0.5% Triton X-100 for 5 mins 

and blocked for 1 hour in 10% goat serum. Primary antibodies were diluted in PBS with 2% goat 

15 
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serum and 3% Triton X-100 and incubated overnight at 4°C at the following concentrations: 

Smad2/3 antibody 1:400 (Santa Cruz, sc8332); pMLC 1:50 (Cell Signaling, #3671). Secondary 

goat anti-rabbit Alexa Fluor 488 (Invitrogen, Al 1034) was added at a dilution of 1 :400 for 1 

hour at room temperature. For F-actin staining, rhodamine phalloidin (Invitrogen, R415) was 

diluted to 1 :800 in PBS and incubated with fixed cells for 20 min at room temperature. Nuclei 

were counterstained in Hoechst dye and cells were visualized using a Nikon Ti-E Microscope. 

Images were processed in Image J and normalized to species-matched IgG controls. All figures 

are representative images for three or more biological replicates. 

QPCR: RNA was isolated using RNeasy colunm purification (Qiagen, 74104). The 

concentration and purity of RNA was determined using a Nanodrop ND-1000 

Spectrophotometer (Thermo Scientific). Approximately 1 µg ofRNA was converted to cDNA in 

a reverse transcription (RT) reaction using the iScript cDNA Synthesis Kit (Bio-Rad, 170-8891). 

Quantitative PCR analysis of each sample was performed in a ViiA 7 Real Time PCR System 

(Life Technologies). Forward and reverse intron-spanning primers (Supplemental Table 1) and 

Fast SYBR Green Master Mix (Life Technologies, 4385612) were used to amplify each cDNA 

of interest. Each sample was run in duplicate and all results were normalized to the housekeeping 

gene Ll9. Fold changes in gene expression were calculated using the delta-delta Ct method.40 

Figures show the mean and standard deviation for a minimum of 5 biological replicates. For 

statistical analysis, average expression and standard e1rnr of the mean were calculated for each 

condition across all biological replicates, each of which is an average of two technical replicates. 

ANOV A analysis followed by Student Newman Keuls test was used to evaluate statistical 

significance. 

16 



'age 17 of 35 

17 

In Vivo Studies and Histology: 6 week-old female Swiss-Hamster mice were used for our in vivo 

studies. Mice were anesthetized with intraperitoneal Avertin. On the dorsal aspect of each 

mouse, two 0.6 cm incisions were made and a subcutaneous pocket was dissected using surgical 

microscissors. In the contralateral wounds, each mouse was implanted with either a flat control 

or a microfiber film, and the surgical wounds were closed with non-absorbable sutures. Two 

weeks after device placement, the mice were anesthetized, and both dorsal surgical sites were 

excised using a 0.8 cm punch biopsy. Tissue samples were fixed for 24 hours in 4% 

parafotmaldehyde and paraffin embedded. Sections were then either stained with Masson's 

Trichrome stain, or deparaffinized and immunostained for collagen I and III. For 

immunostaining, the samples were blocked in 4% BSA, and the following antibodies were used: 

mouse anti-collagen I at 1: 100 dilution (Santa Cruz 80565), goat anti-collagen III at l: 100 

dilution (Santa Cruz 8781), anti-mouse Alexa 568 at 1:500 dilution (Invitrogen), anti-goat Alexa 

488 at 1 :500 dilution (Invitrogen). Fibrotic area was calculated from 19 images (7 flat controls, 

5 short, and 7 long microfiber films) by drawing a region of interest around the fibrotic capsule, 

highlighted in blue by Masson's Trichrome stain. Nuclear aspect ratio was calculated from 19 

images (7 flat controls, 5 shott, and 7 long microfiber films) by measuring the long and shott 

axis of cellular nuclei (highlighted by in purple by Trichrome stain) and dividing length by width 

for each measured nuclei. Collagen I and III intensity was calculated from 19 images (7 flat 

controls, 5 shott, and 7 long microfiber films) by dividing the absolute intensity of 

immunofluorescence by the area of the fibrotic capsule. All measurements were performed in a 

blinded fashion. Immunostained images were obtained using Nikon Elements software and 

normalized to species-matched IgG controls. ANOV A analysis followed by Student Newman 

Keuls test was used to evaluate statistical significance. 
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microporous polycarbonate membrane (PC) is placed between a thin layer of polystyrene (PS) 

and a polypropylene film (PP). (2) The layers are pressed between two rollers at 200°C and 20 

psi, melting the polypropylene film into the microporous membrane. (3) Ethylene chloride is 

used to etch away the polycarbonate membrane, leaving a microstrnctured film. b) Scanning 

electron microscopy images demonstrate microfiber geometry. c) Measurements of imaged 

microfibers reveal uniform fiber diameter and fiber length within long and short fiber films (n <: 

5). 
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Figure 2. Relative stiffness decreases as microfiber length increases. Representative load 

defo1mation curves for the compression of short a) and long b) microfibers. Microfiber stiffness 

was dete1mined from the slope of the unloading curve (arrow). c) The relative stiffuess of short 

microfibers is twice that of the long microfibers(** p < 0.01, n ~ 12) 
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25 

Flat 

microfiber films. a) Scanning electron microscopy images reveal that 3T3 fibroblasts on long 

(16 µm) microfibers lose the characteristic morphology and tense, linear projections classically 

associated with myofibroblast differentiation (n = 3). White boxes indicate areas of high 

magnification shown in Figure 3b. b) High magnification images of cellular projections reveal 

differences in cytoskeletal network density and arrangement on flat, sh01t fiber, and long fiber 

films (white airnws). The linearity and density of the cytoskeleton decreases with increasing 
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26 

fiber length, with the cells draped loosely over the fibers on long microfiber films. c) Rhodamine 

phalloidin staining of F-actin (red) reveals a loss of stress fiber formation in 3T3 fibroblasts 

cultured on short and long microfiber films (n 2 5}. d) Staining for pMLC (green) is dramatically 

reduced in 3T3 fibroblasts cultured on short and long microfibers compared to flat fihn controls 

(n 2 5). e-g) As microfiber length increases, expression of myofibroblast-specific genes aSMA 

and Colla2 progressively decreases at 48 hours. Col3al expression is modestly reduced on both 

long and sh01i fibers (**p < 0.01, n;:: 5). 
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4. TGFP pathway signaling progressively 

27 

length. a) As microfiber length increases, fibroblast gene expression for the TGFf31 ligand, the 

receptor Tf3RII, and the transcription factor Smad3 are reduced. Knockdown of TGFf3 signaling 

is most pronounced on long microfiber films. b) Similar to trends in TGFP gene expression, 

Smad2/3 nuclear localization (in green) is progressively reduced as microfibers increase in 

length. Nuclei are marked by DAPI stain in blue (*p < 0.05, **p < 0.01, n <! 3). 
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Figure 5. Fibrotic encapsulation is reduced around long microfiber films in vivo. a) 

Tricluome-stained histological sections demonstrate a decrease in collagen-rich regions (blue) 

around first short and then long microfiber films compared flat controls (black dashed line marks 

film location). Higher magnification images reveal that fibroblast nuclei adjacent to the film 

interface become progressively rounder on first short and then long microfiber films, in contrast 

to classic spindle-shaped fibroblasts found at the flat film interface (inset photos). b) 

Quantification of fibrotic area reveals a 41 % decrease in collagen deposition around the 

microfiber films relative to flat controls. c) Quantification of nuclear aspect ratio demonstrates 

that nuclei in proximity to long microfiber films are more rounded compared to nuclei near flat 

controls, which are more elongated and spindled. Nuclei in proximity to sh01i microfiber films 

have an intermediate aspect ratio (*p < 0.05, **p < 0.01, n;:: 5). 
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! i Figure 6. Collagen deposition is reduced around long microfiber films in vivo. 
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long microfiber films compared to short microfiber films and flat controls. b) Deposition of 

collagen I, as quantified by staining intensity, is significantly decreased above long microfiber 

films. c) Higher magnification images demonstrate that collagen deposition is not imiform 

around long microfiber films, as it is around sholi microfiber films and flat film controls (white 

dashed line). Collagen I staining is absent in the tissue exposed to the superior, long microfiber-

presenting side of the film, contrasting with intense staining in the tissue exposed to the flat 

inferior side of the film (*p < 0.05, n;:: 5). 
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Supplemental Figure 1. Half angle increases with the addition of microfibers. Compared to 

half angle measurements on flat polypropylene films, the half angle increased similarly on both 

short and long microfiber films (**p < 0.01, n ~ 3). 
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'g Compared to flat controls, staining intensity for pMLC is decrease in fibroblasts cultured on long 
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Supplemental Figure 3. Collagen III deposition is not effected by film surface. Staining 
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Supplemental Figure 4. Harmonic contact stiffness approximates estimated stiffness values. 

Harmonic contact stiffness values for both a) short and b) long microfiber films approach 

stiffuess values for each film calculated from the linear portion of the unloading curve. 

34 



'age 35 of 35 

' '" .. .§ 
:~ 
't: 'o lo 
•<+-< ,o 
~s. 
'd 
'§ 

' "" '·il 
I~ 

Gene 

aSMA 

Col1a2 

Col3a1 

TGFf31 

Tf3R2 

Smad3 

rpl19 

Sequence 

F GCTGCTCCAGCTATGTGTGA 

R CCATTCCAACCATTACTCCCTGA 

F AAGGGTGCTACTGGACTCCC 

R TTGTTACCGGATTCTCCTTTGG 

F CTGTAACATGGAAACTGGGGAAA 

R CCATAGCTGAACTGAAAACCACC 

F AGCCCGAAGCGGACTACTAT 

R TCCCGAATGTCTGACGTATTG 

F ACGTTCCCAAGTCGGATGTG 

R TGTCGCAAGTGGACAGTCTC 

F AAGGCGACACATTGGGAGAG 

R GGGCAGCAAATTCCTGGTTG 

F CATTTTGCCCGACGAAAGGG 

R GATCTGCTGACGGGAGTTGG 

:;:;: Supplemental Table 1. Sequences ofRT-PCRPrimers 
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